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Received 21 June 1973 

Abstract. The energy-momentum tensor for a chiral-invariant theory of massless pseudo- 
scalar mesons is ‘improved’ by the methods of Callan, Coleman and Jackiw. The improved 
tensor has a simple relation to the dilation current and nonvanishing triple-derivative terms 
in the equal-time commutators of its components. 

1. Introduction 

The notion of an ‘improved’ energy-momentum tensor was introduced by Callan et a1 
(1970) (see also Coleman and Jackiw 1971) to satisfy the requirement that its trace 
should have finite matrix elements in a renormalizable theory. The improved tensor 
OPv is related to the symmetrical Belinfante (1940) tensor T P v  by the addition of an 
extra term APv, 

(1.1) 
This term is chosen so that it leaves unaltered the Poincare generators and the dynamics ; 
it is a symmetrical conserved second-rank Lorentz tensor, and is a total divergence. 
For spinless fields (when of course the Belinfante tensor coincides with the canonical 
tensor), they show 

@PV = TPV +APV. 

= - ; ( p a v - , p ~ 0 2 ) ~  (1.2) 

Q = 4 2 .  (1.3) 

@ = q P V  @fly (1.4) 

where Q is a scalar function of the fields. In A44 theory Q turns out to be 

The choice of U was dictated so that the trace 

of the improved tensor is ‘soft’. Unlike the trace of the Belinfante tensor which contains 
field gradients, they have, in the case of Ad4 theory with mass m, 

@ = m2qp. (1.5) 
This can also be written as 

only that term in the energy density Ooo which involves the constant m which has a 
dimension contributes to the trace. 
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This property is intimately connected with another feature of the improved tensor 
discussed by Callan et al, namely its connection with the dilation current. Just as 
Belinfante’s tensor enabled the Lorentz generators to be expressed simply (which is 
not the case with the canonical tensor for a theory with spin), so likewise can the dilation 
current D’(x) and hence the generator of dilations 

D(t )  = D0(x,  t)d3x s 
be given a simple expression. This is 

D’ = o’vxv* 
Since 0’’ is conserved, it is obvious that we have 

a’D’ = 0. (1.9) 

i[D(t), Ooo(x, t ) ]  = (x . a  +4)Ooo - 0. 
We remark that the equal-time commutators for the components of e’’ imply 

(1.10) 

Taken in conjunction with (1.6) this equation simply ensures that the scale dimension 
of the energy density is 4. 

The equal-time commutators of W’ are also superior to those of T”. This is because, 
as shown by Callan et al, they correctly include the triple derivative Schwinger terms 
whose absence was shown by Boulware and Deser (1967) to be incompatible with 
positivity. 

Now all these arguments have been made heretofore in the context of renormalizable 
theories, notably theory. We would like to see how far they are applicable, at least 
formally, to the nonrenormalizable case of the chiral-invariant interactions of massless 
pseudoscalar mesons. As emphasized by Boulware and Deser the most likely origin 
of the triple derivative terms is in a careful definition of the product of field operators 
at the same point. Presumably the additional term AP’ in the improved tensor is mimick- 
ing the effect of the appropriate limiting procedure. In the chiral theory the problem 
is further compounded. Not only does one have to cope with products of fields at the 
same point, but there are nonpolynomial functions of fields. And as yet a further 
complication there are field gradients which do not even commute with the fields which 
they multiply. In this paper, we are not concerned with the last-mentioned difficulty. 
In a recent paper Parish (1973) has shown that the canonical tensor T’’ may be written as 

T’” = if, ZS,,ja”jba((s~S; +S$S: - ~ ’ v ~ K ~ ) .  (1.11) 

This expression in which the Gell-Mann currents (a and b range over both the axial 
and vector SU(n) labels) appear symmetrized is uniquely determined by the requirement 
that it is indeed chiral invariant. 

What we propose to do is to try to ‘improve’ this canonical tensor (this is a theory 
without spin so T’’ is already the symmetrical Belinfante tensor) by adding a term A’’ 
to it. We will not be able to determine A’‘ so that the improved tensor has a ‘soft’ 
trace : this after all is a very nonrenormalizable theory! But we shall be able to use the 
connection with dilations, and will find furthermore that there appear triple derivative 
terms in the appropriate equal-time commutators. 

It should be emphasized at the outset that the discussion in this paper is at best 
heuristic; the theory is nonrenormalizable and none of the subtleties associated with 
anomalous dimension, etc, have been considered, let alone dealt with. 
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2. The impmvd tensor 

Our starting point will be the requirement that the dilation current is given by (1.8). 
This means that A,’ must be chosen to give, for xo = yo, 

i( f x,Opo(x) d3x, #(y) = (y . a  + l)4i(y). 1 
From the relationship between the currents and the canonical fields 4i and momenta 
zi it is easy to show that for xo = yo 

i( f x,Tpo(x) d3x, 4’(y) = y . a@(y), 1 
i( f x,APo(x) d3x, 4’(y) = +‘(y). 1 

(2.2) 

so we require of A”’ that, again when xo = y o ,  

(2.3) 

If we also recognize the need for A,’ to be of the form (1.2), this becomes a condition 
on Q, namely 

.gij = 24j. (2.4) 
The notation Q , ~  means do/&$‘. The matrix g’j is the inverse of g i j ,  which in turn is the 
metric on the manifold parametrized by the meson fields q5i. We thus have a set of 
partial differential equations 

Q,i = 2g,4’ (2.5) 

(gij,k -gi,c,j)+i = 0 

for Q:  the integrability conditions 

may be satisfied. We give explicit solutions for 0 below. 

3. Thefunctiooa 

In this section we show that a function Q of the fields 4 which satisfies the requirement 
(2.5) may always be found. Consider first the case of SU(2) @ SU(2). It is well known 
(Weinberg 1968) that with the definitions 

$2 = +idij@, (3.1) 

the metric g i j  is given by 

gij = f , ’ [ ( f 2  + 4 2 ) - ’ P i j + h - Z Q i j ] .  (3.5) 
There is an arbitrary function f(4’), normalized so that f(0) = f,, specification of 
which corresponds to a particular ‘gauge’ for the pion fields, ie, to a particular para- 
metrization of the manifold on which gij is a metric. 
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Taking U = 0 ( 4 ~ ) ,  the requirement (2.5) becomes 

which may be integrated for any choice off. In particular for ‘normal coordinates’, 
when 

f = @ C O t J m Z >  (3.7) 
for which choice 

h = ,L, (3.8) 

U = 4 2 .  (3.9) 

one obtains the simple result 

Turning now to the case of SU(n) @ SU(n), but continuing to use normal coordinates, 

(3.10) 

The quantities are the conventional (Gell-Mann) totally antisymmetric structure 
constants of SU(n). For normal coordinates we have (Callan et a1 1969, Charap 1970) 

we define an antisymmetric n x n matrix x linear in the fields 4k through 

x.. IJ = 5 .  Ilk ( p k .  

sin‘x g = -. 
X2 

From the obvious relation 

X i j &  = 0, 

g i j 4 j  = d i j 4J .  

U,i = 2dij4’. 

rJ = 4’Sij4J E 4 2 .  

it follows that 

Hence the differential equations (2.5) for U become 

with solution again 

Note that we always have 

idka,, = 4kgk141, 

and in normal coordinates 

i$kU,k = 42. 

4. The equal-time commutators 

(3.1 1) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

Having used the connection with dilations to determine Opv, we are now in a position 
to evaluate the equal-time commutators of its components. The method is a straight- 
forward application of canonical manipulations, and is very tedious. We quote only 
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the results. We obtain first (always xo = yo ; r,  s, . . . denote space indices) 

i[Oo0(x), Oo0(y)] = (Oor(x) + 0°r(y))d:6(3)(x -y) ,  (4.1) 

where there are no more singular terms on the right-hand side; but none are needed. 
For the second commutator, the result is 

i[Oo0(x), Oor(y ) ]  

= ( o r y x )  - q - s 0 o o ( y ) ) a : ~ ) ( x  - y )  

The second term on the right-hand side? vanishes on application of the equations of 
motion. The triple derivative term simplifies when normal coordinates are used, and 
becomes 

& a:a:al;[(vqru - 3 q - ~ v y 4 2 8 ( 3 ) ( ~  41, (4.3) 

which is exactly what was obtained in A44 theory by Callan et al. This term is absent 
in the corresponding expression obtained using Tp”, and is needed to satisfy the positivity 
requirements discussed by Boulware and Deser. 

We may again show, even for chiral theory, that (1.10) holds; actually the triple 
derivative terms in the equal-time commutators give no contribution. 

If the equations of motion are used, we have 

0 2 0  = ap4i(2gij + 4igij,l)ap4j, 

0 = +dp@f$igij,id%#lj. (4.5) 

(4.4) 

and with this we obtain for the trace of Opv 

Now the fields C#J~ enter into gij always in the form (@Ifn); indeed gij is an analytic 
function of this ratio, with coefficients which are pure numbers independent of f,. 
This means that we also have 

(4.6) 

Starting from 

it is easy then to  show 

Taken in conjunction with (1.10) this again serves as a consistency check because all 
that (1.10) now means is that 0’’ has scale dimension 4. 

We note in addition the equal-time commutators for the charge densities 

i[@oo(x),J~(y)] = j c ( ~ ) a : h ( ~ ) ( x - y )  (4.9) 

t We remind the reader that we have not paid any attention to the problem of ordering of the noncommuting 
factors in this expression, or in equation (4.4) below, etc. 
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for the vector quantities, and (in normal coordinates) 

i[Ooo(x), j ! ( y ) ]  = j~(x)d~cS3)(x - y )  -3V,2[C$i6'3)(x -y)]  (4.10) 

for the axial quantities. The currents are still locally conserved 

a,j"p = 0, (4.11) 

but the energy density Goo is no longer a localchiral invariant. If F s i  is a chiral generator, 
on integrating (4.10) over y we obtain 

i [~5 ' ,  O O O ]  = +V2C$'. (4.12) 

Nonetheless the chiral generators are constants of the motion ; equivalently the total 
energy is chiral invariant. 
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